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Asymptotic behaviour of A + B --* 0 type reaction-diffusion 
systems from time-power series 

Sandra Song and Douglas Poland 
Department of Chemistry, The Johns Hopkins University, Baltimore, M D  21218, USA 

Received 29 November 1991, in final form 14 April 1992 

Abstract. Lattice models for reaction-diffusion systems of the type A + B + O  are studied 
using power series in time and techniques developed for determining critical exponents 
from series. By inverting the series to give time as a function of the appropriate density 
variable, the terms in the new series yield successiw estimates of the exponents that 
characterize the asymptotic (long-time) behaviour of these systems. The estimates converge 
rapidly to the expected limiting YBIUCS. 

1. Introduction 

The analysis of lattice models in which species hop (diffuse) from site to site and then 
react irreversibly (either coalescing or annihilating one another) when they are on 
nearest-neighbour sites has shown that the long-time behaviour of such systems is very 
different from that predicted by the use of a mean-field orrapid-mixing approximation. 
These reaction-diffusion models thus illuminate an interesting chemistry to be found 
in such systems. For the A+B+O model, where two different species A and B diffuse 
on a lattice and annihilate one another on closest approach, it is well established 
(Ovchinnikov and Zeldovich 1978, Toussaint and Wilczek 1983, Kang and Redner 
1984, 1985, Zumofen et a /  1985, Branson and Lebowitz 1988, Clement et a/ 1989, 
Lindenberg et a/ 1990) that the asymptotic behaviour for the case where the initial 
concentrations are equal (& = 6,) is given by 

where pa is the number density of A particles and d is the dimension of space. For 
rapid, random mixing (see the appendix) one expects p A - f - '  independent of 
dimension. Thus for d a 4  one has the mean-field result, but in dimensions one, two, 
and three one obtains a very much slower decay to the final state. 

VariantsontheA+B+OmodelareA+A+O (annihilation)andA+A+A(coagu- 
lation). These models both have the following asymptotic behaviour (Rasaiah et a/ 
1990, Lin 1991, Ohtsuki 1991, Zhou 1991) 

P A  - 1-412 ( d < 2 ) .  (1.2) 

In two dimensions the asymptotic behaviour is 1-'  In 1 while for d > 2 one has the 
mean-field behaviour, i.e. 1 - ' .  

Thus a number of reaction-diffusion lattice models have the asymptotic form 
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The values of the exponent U quoted above have been deduced mainly from scaling 
arguments. The validity of these results are supported by exact solutions for special 
cases (reactions of the A+ A type: Spouge 1988, Balding and Green 1989, ben-Avraham 
er al 1990) and computer simulations (Argyrakis and Kopelman 1990, Jiang and Ebner 
1990, Becker er al 1991). 

In the appendix we review, for purposes of comparison, the kinetics of the A+ B+ 0 
reaction when one can assume that the distribution of A and B is random at all stages 
of the reaction (well-stirred limit). Models of the mixing process (Argyrakis and 
Kopelman 1989, Sokolov and Blumen 1991) indicate that the approach to the f-' limit 
is a complex process. 

In the present work we explore the utility of using time-power series for reaction- 
diffusion lattice models to determine the exponent Y in (1.3). If c ( t )  is the concentration 
of the species of interest, we construct the time-power series 
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m 

c( t )=  c'"'t"/n! (1.4) 
" - 0  

where 

We have recently treated the construction of time-power series for lattice models of 
co-operative sequential adsorption (Poland l989,1990a, b, 1991a, b, c, d). In that case 
one starts with the empty lattice and adds particles in stepwise fashion, as illustrated 
in figure l(a). The first derivative in (1.4) is associated with the first step, the second 
derivative with the second step, and so on (the details are given in Poland 1990b). In 
fact the c'") are similar to virial coefficients in the density expansion of equilibrium 
thermodynamic functions (e.g. the second virial coefficient involves the interaction of 
two particles, while E'*)  involves the addition of two particles). For the models under 
consideration here, we start out with a full or partially full, infinitely long lattice; 
sample initial configurations are illustrated in figure l(b). For this case, c") involves 
a single change in the system averaged over all possible initial conditions (rather than 
the addition of a single particle to the empty lattice as is the case with sequential 
adsorption). It might seem that in this case e'" would be a very complicated quantity 
(because of the requirement to average over all initial conditions). In fact this turns 
out not to be the case and one can obtain a finite number of the d n )  for the models 
of interest here with only a little more effort than that required to treat sequential 
adsorption. We illustrate the construction of the series for the A+B+O reaction in 
one dimension in the following section. 

. . .  A B A A B B B A B A  . . .  

. . .  O O A B A O O A O B  . . .  

. . .  A O O A A A O A O A  . . .  

W I B I  

Fiiure 1. ( a )  Illustration of  sequential addition of panicles to an empty lattice: 
( b )  Illustration of sample initial conditions for the A + B - r O  reaction. 
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2. Time-power series 

In this section we construct a hierarchy of differential equations for the A + B + O  
model in one dimension that enable us to evaluate exactly a finite number of the 
coefficients c'"' in (1.4). We begin by constructing an equation for the rate of change 
of the density of A-particles. We denote this density as pA; this is a normalized density 
(or probability) that can vary from zero (no A s  on the lattice) to one (all lattice sites 
occupied by A). In figure 2 we show all the reactions that change the occupation of 
agiven site (shown underlined in figure 2) by species A. As indicated in the introduction, 
there are two types of reaction possible, annihilation which can occur when A and B 
are nearest neighbours and diffusion which can occur when A or B have a least one 
unoccupied nearest neighbour. We assume homogeneous initial conditions which 
means that the density of the various lattice configurations shown in figure 2 are 
independent of position and orientation on the lattice, i.e. 

PAB = PnA PA0 = POA . (2.1) 

Using (2.11, the sum of the reactions shown in figure 2 reduces simply to the following 
differential equation (note that the reactions involving pAO and pOA cancel because of 
( 2 . 0 )  

Taking the generic c(r)  in (1.4) as pa we thus have immediately 

c'l'= (%) = -4(p,,),=, 
,=o 

We can use any model we wish to describe the initial density. For example, we 
could use a Markov chain with nearest-neighbour conditional probabilities that reflect 
a tendency for the A's and B's to cluster (or to repel one another) on the lattice. We 

Figure 2. The various types of reaction that can occur in the A+ B + 0 system. The reference 
site i s  underlined. 
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stress that one does not need to assume a random initial condition. However for 
simplicity, that is what we will do. We let the a priori probabilities that a given lattice 
site is occupied by A, B, or is empty (0) at zero time be given by 

(PA)r=O= ( P R ) I = ” =  P ( P J , = o =  Y (2.4) 

a + p +  y = 1. 
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with the conservation relation 

(2.5) 

Because of the relation (2.5) we can eliminate y and describe the initial probabilities 
solely in terms of a and p. Assuming a random initial distribution one has then 

( P A B ) t = O =  (2.6) 

c( ’ )  = -4ap. (2.7) 

giving 

This gives the first derivative averaged over all initial configurations. 
To proceed we take the derivative of (2.2) giving 

Thus we need a differential equation for pAB. Proceeding as before, we obtain 

(%) = ~ ( P A O B ) O - [ ~ ( P A B ) O +  (POAB)o+ (PABO)o+2(PBAB)o+2(PABA)ol.  (2.9) 

Again assuming a random initial configuration we have 
( -0  

( P A d 0  = 4 
(PAOB).= ( P O A B ) ~ =  ( P A B O ) ~ =  ~ P Y  (2.10) 

( P A B A ) ~ =  a2P ( P B A B ) ~ =  ap’ 
which when used in (2.9) and (2.8) gives the second derivative 

d21 = sap + sa’p + sap2. (2.11) 

To go on we need differential equations for ever larger chunks of lattice. The final 
results for the next three terms are 

c(’) = -32ap - 24ap2 - Sap3 - 24n2p - 48a2p2 - 8a3P 

d4’= 144ap+ 168ap2-64ap3+8ap4+ 168a’p +136a2P2 

+80a2P3-88a’/3 + 104a’p2+32a4P 
(2.12) 

c”) = -784ap - 840ap2 + 632ap’ - 2 4 4 -  gap’ - 848a’P - 560a2P2 - 160a2P3 

- 224a2p4+ 824a’p - 312a3P2 -464a’p3 - 208a‘p - 256a4p2- 8asp. 

For the special case of a = p the above expressions become 
c( l )=-4a2 ~ ‘ ~ ) = 8 a ~ + 1 6 a ’  CO’= -32a2 -48a’ -64a4 

c ( ~ ) =  144a2+336a3- 16a4+224a5 (2.13) 

d5)  = -78401’ - 1688a’f 896a4- 704a’ - 9 6 0 ~ ~ .  

We see that these quantities are polynomials in a. 
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At the special value a = p = 1/2 (lattice filled at f = 0, half A, half B) the coefficients 
in (2.13), when used in the general series (1.4), give (where we also give the sixth term 
for this special case) 

(Diffusion) c ( t )  = 1/2- f+2t2-3f3+(7/2)f4-(97/30)fS+(837/360)r6+. . . (2.14) 

For comparison we give the corresponding results for the well-stirred limit (see the 
appendix): 

(Well stirred) c ( t )  = 1/2 - f + 2t2-4f'+ 8t4 - 16tS + 32t6+, . , 
One sees that for this special case the first difference between the two forms is in the 
1' term. 

(2.15) 

3. Matrix formulation 

One can also write the required hierarchy of different equations in terms of the 
appropriate vectors and matrices. We consider the example of the previous section 
( A + B + O  in one dimension). The main difference here from the approach of the 
previous section is that instead of considering an infinite lattice we treat finite chunks 
of lattice wrapped in a circle (periodic boundary conditions). This will allow us to 
calculate a finite number of derivatives (powers of time in the time series); specifically, 
if we treat a ring of n sites, we obtain ( n  - 1) exact derivatives for the infinite system 
(Poland 1989, 1990a). 

First one must list the rings required to treat a given number of sites. These are 
illustrated for n = 2 and n = 3 in figure 3. One sees that not all possible rings are 
required. For example, rings that contain only A's or only B's are deleted since these 
do  not contribute to a change in the number of A or B particles (since one must have 

/"\ /"\ 
0 - 0  0 - 0  0-0 

13 3=? 2 3pI = 

B - O  A - B  B - B  
64% 3.2p 3.492 

Figure 3. Configurations of finite rings for n = 2 and n = 3 sites required to construct the 
appropriate matrices for the A + B + O  system. The initial probabilities the various rings 
are indicated. 
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a mixture of A and B to get the annihilation reaction). Also, we require only one 
orientation of each ring; the combinatorics of different rotational orientations and 
reflections will be introduced in the initial conditions. 

We define a row vector, p, whose elements are the probabilities of the appropriate 
rings. The initial probabilities of the rings are given in terms of the parameters a and 
p (see (2.4)) for random initial configurations; also included in the initial probabilities 
are the number of rotations and reflections of a given ring. The appropriate initial 
vaiues are indicated in figure 3; note that the sum of the probabiiities does not add 
up to one since we are not required to include all ofthe possible rings (as just explained). 
We then introduce the matrix of transition probabilities 

w = ( w , )  (3 .1)  

S Song and D Poland 

where 

wg =rate constant for reaction ring i + ring j 

wii = -1 wg (sum over j with j # i). 

The differential equation for the time evolution of the rings is then given by 

dp ld i  = pW (3.3) 

PA= (11 N)Pu (3.4) 

!c !e:E-s of :he :’ec:or p, the xet dexsity of A. sites is tkex 

where U is a column vector whose ith element is the number of A s  in the ith ring. 
The derivatives of pA (hence the coefficients in the time-power series) are then 

, = o  
(3.5) 

where p(0) is the vector of initial ring probabilities. 
As an example, from figures 3 for n = 2 one has 

Using (3.6) in (3.5) gives 

p g )  = -4ap (3.7) 

which is the result of (2.7). A two-site ring gives us only the correct first derivative. 
To obtain through py ’  we require rings with three sites. From figure 3 we have 

p(O)=(y’ 3 a y Z  3py2 6 u p y  3a2P 3ap2) 

0 0 0  0 0 0 0 

W =  
2 0 0 - 2  
n 4 n  0 - 4  o 

\ o  0 4 0 0 -41 \ I /  

From these equations we obtain the following derivatives for the infinite system 
p f ’  = (I p p =  -4ap p y ’ =  Sap(1 + a  + p )  (3.9) 

(3.8) 
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which reproduce the results of (2.7) and (2.11) obtained in a different manner. Note 
that while all of the initial probabilities are cubic in the initial densities, the lower 
order derivatives contain terms that are not cubic (reflecting the use of (2.5)). 

In summary, the matrix method gives a systematic alternative means of deriving 
the coefficients in the time-power series. The fact that one has two independent ways 
of deriving the c'") serves as a useful check on the accuracy of the results. We turn 
now to the question of how to determine the exponent U from the time-power series. 

4. Asymptotic form 

We continue to use the reaction A + B +  0 in one dimension as an example. We take 
the case a = p (equal initial concentrations of A and B). From the discussion in the 
introduction we expect the long-time asymptotic behaviour 

PA(1)- f-" (4.1) 

with U =  114 for the one-dimensional case. Our goal is to determine U from the power 
series (1.4). To this end we introduce the variable 

Y = 1 (4.2) 

which varies from zero at t = 0 to one at 1 = 00. Writing the time series for pA as 

where an= pA(0) = a, we then invert this relation using (4.2) to give 
m 

f =  b,y". 
n = ,  

From (4.1) we have 

For a singularity of the form of (4.5) the ratios of successive terms 

r, = b,/b.-, 

are given by (Stanley 1971, Gaunt and Guttmann 1974) 

where y ,  is the radius of convergence. From (4.5) we have 1, = 1 and hence 

l / u = l - n ( l - r n ) .  

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Thus the various r. give a series of estimates of v which one hopes will converge 
rapidiy to the true vaiue. 

For example, for the case a = p  = 112 we use c ( t )  given in (2.14) with the variable 
y = 1 - 2 c  to give a time-power series for y 

y=21-412+6t'f ... . (4.9) 
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Introducing a scaled time 1'=21, but then dropping the prime for simplicity, gives 

S Song and D Poland 

y=t-r2+(3/4)13+ . . .  (4.10) 

which can be inverted to give 1 as a function of y 

1 =y+y2+(5/4)y3+(27/16)y4+(1133/480)y5+(38 721/11 520)y6+. . . 
= y + y 2 +  !1,25)y3+ !l.hXXjy4+ (2.360)y5+!3,3h1jy6+. . . (A1!!! 

The series is seen to be very well-behaved with the coefficients all positive and 
monotonically increasing. Applying (4.8) we obtain the following series of estimates 
of v 

v = 1,0.571,0.417,0.334,0.282 (4.12) 

which indeed are rapidly converging toward the expected valued of U = 0.25. The values 
of v given in (4.12) are plotted as a function of n (determined by the r. value used) 
in figure 4 (the curve marked 1 - d). 

; . ; ; r $ ; ; d - /  I .oo 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  V 

. - - . - - - 0.25 

0.00 
1 2 3 4  5 6  

n-1 

Figure 4. Estimates of the exponent Y for the A + B + O  system in one, two and three 
dimensions using equation (4.8) and the series (4.ll), (5.11). and (5.12) respectively. The 
limiting valuer shown by the dashed lines are U =  114, 112, and 314 respectively in one, 
two, and three dimensions. 

5. A+B+ 0 in two and three dimensions 

The procedure used in section 2 to construct a time-power series from a hierarchy of 
coupled differential equations for the A + B + O  reaction in one dimension is easily 
extended to two and three dimensions (using the square and cubic lattices, respectively). 
The basic equations are (analogues of (2.2)) 

where PA is again the number of lattice sites occupied by A and pAB is the density of 
nearest neighbour AB pairs. One then proceeds to construct differential equations for 
the rate of change of pAB on the appropriate lattice. 



Asymptotic behaviour of reaction-diffusion systems 3921 

For general a and p, assuming the same random initial conditions as we did for 
the one-dimensional model (see (2.4)) one obtains 

(ZD) c(0) = a c(’) = -sap c”) = 1 6 4  + 48ap2 + 48aZp 

~ ‘ ” = - 1 2 8 4  -144ap2-240ap3- 144a2P-1056n’~2-240a’~  
(5.3) d4)= 1216ap+1296ap2+480ap3+1104ap4+ 1296a’p 

+4224a2P2+ 14256a2p3+480a3p+ 14256a3P2+ 1104a4p. 

(3D) p) = a c‘l ’=-12ap cI2) = 24ap + 120ap2+ 12Oa’P 

c”’=-288ap-36Oap2- 1080ap3-360a2p -4560a2P2-1080a3p 
ci4) = 3456ap + 3240ap2+4320ap3 + 9240ap‘+ 3240a2P (5.4) 

+ 89 280a2p2+ 34 920a2p3 + 4320a’p +34 920a3p2+9240a4P. 

For the special case of a = p the above results reduce to the following polynomials 
in a: 
(2D) c‘O’= a c ( I 1 =  -Sa2 ci2’= 16a2+96a3 

cI3)= -128az-288a’-  1536a4 ( 5 . 5 )  

cI4)= 1216u2+2592a3+5184u4+30 72001~ 

(3D) c(UJ - -a = -12“ c“’ = 24a‘ +240a3 

col = -2880’- 7 2 0 ~ ~  -67200~ 

cI4’ = 3456a2 +6480a3+97 920a4+ 88 320~1’ 

Finally, when a = p = 112 we obtain the following numerical coefficients: 

(2D) c ( O ) =  1/2 p)= -2 ci2) = 16 
(5.7) 

(5 .8 )  

c”)=-164 c ( ~ )  = 2080 
(3D) d o ) =  112 ciI)= -3 cC2’ = 36 

c ( 3 )  = -582 c ( 4 =  10 554 

Using the coefficients of (5.7) and (5 .8)  in the general time-power series (1.4), 
scaling the time ( f ‘ =  41 in ZD and f ’ =  6f in 3 ~ ) .  and introducing the variable y of (4.2) 
(where y = I -2c in both ZD and 3~ for a = p = 112) gives (dropping the prime on f 
for simplicity) 

(ZD) y ( 1 ) =  f -12+(41/48)13-(239/384)f4+. .. 
(3D) y = f - f ’ + ( 9 7 / 1 0 8 ) f ’ - ( 1 7 5 9 / 2 5 9 2 ) f ~ + . .  

(5.9) 
(5.10) 

Inverting the above series gives our working equations 
(7.D) t = y + y 2 +  (S5/48)y3+ (529/384)y4+. . . (5.11) 

(3D) f =y+y2+(119/108)y’+(3079/2592)y4+. . . . (5.12) 

The ratios of successive coefficients in the above equations give series of estimates of 
the exponent v of (4.1) using (4.7) 

(2.) v=li16!23,110!199, 

= 1,0.696,0.553,. . . . 
(3D) v=l,36/47,714/937,. 

(5.13) 

= 1,0.765,0.762,. . . . (5.14) 
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The numbers given above are plotted in figure 4 as a function of n, the summation 
index in (4.7). One sees that in one, two, and three dimensions the estimates of the 
exponents from the time-power series rapidly converge to the general result d/4, i.e. 
U =  114, 112 and 314 respectively in one, two and three dimensions. Since the value 
of U for three dimensions is close to the mean-field result, the sequence of estimates 
of U converge rapidly in that case. 

S Song and D Poland 

6. A + A + 0 and A + A + A in one dimension 

As mentioned in the introduction, the reactions A+A-tO and A+A+A in one 
dimension are both expected to give pA- f - ' i 2 .  To construct the hierarchy of differential 
equations for these systems we proceed exactly as we did with the A +  B + 0 reaction 
in section 2. We begin with A+A-tO. The reactions changing the occupancy of A at 
a given lattice site are the same as those given in figure 2, except that for the annihilation 
reactions, B is replaced by A. Assuming that the lattice is homogeneous, i.e. pAO = pOA 
one then has in analogy with (2.2) 

(A + A -f 0) dpA/df = -4pAA. (6.1) 
For the case of A+ A-tA the diffusion reactions in figure 2 apply. But in this case the 

is underlined) 
o-..ihiln+i-- mo-rin-r 0-a Ithn o i t n  rnl.rtn.4 +n -n-:+n. +he rhorn- nf -nn.,-o-.-.r hv A 
L111111.LIIaLIYI. L c a I L I Y I I a  a,b ,L.,L D l l r  IblbUU," ,U I I I Y I I I L U I  L l l b  "laL"6c "1 "C'"pa..uy ", n 

AA+AO AA-tOA 
AA+OA AA+ A 0  

One sees that only the first two reactions lead to a change in the occupancy by A at 
the chosen site. The basic differential equation is then 

(A+A+A) dp,ldf = - ~ P A A  (6.3) 
where, again, since pOA = pAo, the contribution of the diffusion terms exactly cancels. 

One then proceeds to form differential equations for dpAA/df in the two cases. We 
assume random initial conditions with 

For general a we obtain 

(A+A+O) 

(A+A+A) 

At the special value a = 1 we obtain a few more terms: 
n ( 3 1 = - * ~ n  

1 "Y 
A 2 J  - * A  4 ' -L* (;l+;l+O) c ' o ' = i  e"' ~ - 

(6.7) d4' = 1120 c(" = -8064 = 60 592 

(6.8) 
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For the case of a = 1 we take y = 1 - c and scale time appropriately (t'=4r for 
A+A+O, and t ' = 2 t  for A+A+A, dropping the prime for simplicity) giving 

(A+A+O) y=f-(3/4)f2+(5/12)t3-(35/192)f4-(21/320)t5 

-(3787/184 320)r6+ 

(A+ A+ A) y f - f2+ ( 5/6)t3 - (7/ 12)t4+ (7/20)tS+. . . 

which when inverted give 

(A+ A +  0) f = y + (3/4)y2+( I7l24)y3+ (35/48)y4+(47/60)ys 

+ (158 963/184 320)y6+. . , 
(A+ A+ A) 

The ratio method then gives the following estimate of the exponent U: 

(A+A+O) U =2,6/5,17/19,35/48,24064/38 643,. . . 

t = y + yi+(7/6)y3+(17/12)y4+ (26/lS)ys+. . . . 
(6.11) 

(6.12) 

=2,1.2,0.895,0.731,0.623,. . . (6.13) 

(A+A+A)  u=l,2/3,7/13,17/36, 

= 1,0.667,0.538,0.472,. . . . (6.14) 

The exponents given aboe are plotted as a function of the summation index ( n )  in 
figure 5 ;  the values for both models are seen to be converging toward the expected 
value of 1/2 (we note in (6.14) that the estimate of U is actually slightly below the 
value 112). There is no guarantee that the estimates of the exponents will extrapolate 
monotonically to the limiting values. Sometimes nearby roots in the complex plane 
cause a small background oscillation in the values obtained. For the case of a random 
walk of a single particle on a lattice, the probability that the particle remains at the 
original site goes to zero asymptotically as t -1 '2 .  One can show exactly that Pad6 
approximants for the exponent do  not approach 112 monotonically (instead the 
function has a single maximum before settling down to the value of 112). 

V 

0.04 . , . , I 
i i f *  5 6 

n-1 
Figure 5. Estimation of the exponent Y for the systems A + A + O  and A + A - A  in one 
dimension using equation (4.8) and the Series of (6.1 I) and (6.12) respectively. The dashed 
line gives the limiting value of Y =  112 for both. 
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7. A + B + B ,  one species immobile 

For the I D  systems 

S Song and D Poland 

(mobile A, immobile B) A + B + B  

(immobile A, mobile B) A + B + B  

the expected asymptotic behaviour is (Sokolov et al 1991) 

(immobile B) pA- exp( - r ” 3 )  
(immobile A) pa- exp(-r‘/’). 

(7.1) 

(7.2) 

(7.3) 

(7.4) 
For these models the asymptotic form is thus a stretched exponential of the general form 

PA-exP(-f’) (7.5) 
and we enquire here if our series method can give estimates of the exponent U for the 
functional form of (7.5). Taking U = 2pA we first form the series for -In U which has 
the property 

-Inu-r‘  (7.6) 
and then introduce the variable w with the asymptotic form of 

w = l / ( l - l n u ) - t - ” .  (7.7) 
We now proceed as before forming 

which when inverted gives 

as before. The net transformation is 

(7.10) 

The series are obtained in the manner described for the previous models. The final 

(7.11) 

results are 

(immobile B) 

(immobile A)  
(7.12) 

Again these series are seen to be very well-behaved with the coefficients increasing 
monotonically. Using (4.8) gives the following estimates of the exponent Y: 

I = y + (5/4)y2 + (1 9/ 12)y3 + (97/48)y4 + (827/320)ys + . . . 
t = y+(5/4)y2+ (37/24)y3+( 121/64)y4x (S95/3X4)ys+. . . . 

(immobile B) ~=2/3,10/17,19/40,388/929,. . .  
=0.667,0.556,0.475,0.418,. . . (7.13) 

(immobile A) u=2/3,10/17,74/141,726/1511,.  . . 
=0.667,0.588,0.525,0.462,. . . . (7.14) 
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The sequences in (7.13) and (7.14) should be asymptotic to 1/3 and 1/2 respectively. 
Clearly they are headed in the correct direction (we note that the last estimate of Y in 
(7.14) has dropped below the expected value). We give an altemative estimate of these 
exponents in the next section. 

8. Summary 

We have shown that power series in the time of moderate length (5 or 6 terms), when 
properly manipulated, can give estimates of power-law exponents and even exponents 
for stretched exponentials, that converge rapidly to the expected limits. We have 
determined the series here by hand by constructing the hierarchy of different equations 
to a given order. (For the case of A +  B + 0 in one dimension we have also checked 
the series through the fourth order by using the independent matrix method of section 
3.) In order to obtain longer series one would have to computerize the construction 
of the differential equations (or, in one dimension, the construction of the appropriate 
matrix). The method outlined here can be applied to many other reaction-diffusion 
models. For example, we have successfully applied the method of using time-power 
series to determine power law exponents to aggregation models governed by the 
Smoluchowski equation. 

We have seen that that ratio method of (4.7) works well for the models considered 
here. The ratio method assumes that the singularity of interest, e.g. (4 .9 ,  is the dominant 
one (nearest singularity to the origin). If that is not the case, one can use Pad6 
approximants to concentrate the influence of the desired singularity (Stanley 1971). 
Given the general series t = t(y) one can construct the function 

f ( Y )  = t / Y  (8.1) 

and then form the series for 

(1  - Y )  d W / d  I n y = g ( y )  (8.2) 

where 

g ( l ) = l / u .  (8.3) 

This method in principle will work for power law singularities as in (4.1) or for the 
stretched exponential of (7.5). where in the latter case one uses i(y) as constructed in 
(7.8). 

The (1/2) Pad6 approximants to g(y) are shown in figure 6 for the stretched- 
exponential models of (7.1) and (7.2). The horizontal dashes at y =  1 give the expected 
values (1/ Y = 3 for immobile B and I /  U = 2 for immobile A; the Pad6 approximants 
give respectively the values 3.69 and 1.85). Clearly a longer series on which to base 
the Pad6 approximants could be expected to give a much better estimate of the 
exponents. 

Oddly the above approach does not work well for the power-law models (the Pad6 
approximants seem to develop obscuring roots). A practical approach that allows one 
to construct a good approximate form for p A ( i )  over the whole time range for these 
models is as follows. We define the function h(y) by 

f = (*)""'. (8.4) 
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0.0 0.2 0.4 0.6 0.8 1.0 I 2 

Y 

Figure 6. Pad& approximants to the function g(y) defined in (8.2) for the models of (7.1) 
and (7.2) (immobile B and immobile A respectively, labelled B and A). The y ? ! ~ p  .f!hc 
exponent in the stretched exponential is given by 11 Y = g ( y  = 1). ?'he correct values are 
indicated by the horizontal dashes at y = 1. 

We can construct h ( y )  so that t ( y )  defined by (8.4) has the first N derivatives exact 
and the correct asymptotic behaviour. By constructing the function h ( y )  and seeing 
how rapidly it approaches a limiting value we learn how rapidly the asymptotic form 
of (4.5) is aiiaiiieii. Giveii ?v' exaci terms for i i y )  one obiains ( X - 2 )  ierms in the 
series for h ( y ) .  For the A + B +  0 reaction in one dimension, using the numbers given 
in (2.14), one obtains 
h ( y )  = 1+0.2Sy+0.312 50y2+0.402 09y3+0.523 70y4 

+[(0.792 8 1 ~ ) ~ / ( 1  -0.792 81y)l. (8 .5)  
The term in square brackets is a correction term of fifth order and higher in y that 
forces h ( 1 )  = 4  (without the correction the truncated series gives h(1) = 2.49). The 
function h ( y )  is shown in figure 7(a) while the function pA(s)  is plotted in figure 7(6) 
(recall that y = 1 -2pA; s = f / ( l +  1 ) ) .  The function pA(s) shown in figure 7(6), calcu- 
lated using (U), has the first six derivatives with respect to s (time) exact and gives 
the correct asymptotic form, i.e. tC"4. The mean-field form (see (A - 11) in the appendix) 

sr&d time c ' =  2!) 
PA= i( 1 -s) (8.6) 

ig (using 

' F A  4 :::cl 
hW) 2 '1 . , , , / I  pA , , \ 

1 Mean Field 

0 0.0 
0.0 0.2 0.4 0.6 0.8 1.0 0 0  0.2 0.4 0.6 0.8 1.0 

Y I 

Figure 7. ( a )  A plot of !he function h(y)  defined in (8.5); h ( l )  =4; ( b )  Plots of pA for the 
A + B + O  reaction as a funnion of the variable s =  t / ( l + l )  for the function of (8.4) 
(labelled as series) and !he mean-field result of (8.6). 
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which is also shown in figure 7(b). From equations (2.14) and (2.15) we know that 
the mean-field result and the exact series agree through the second-order terms, and 
this is evident in figure i ( b ) .  Since h(y) is an effective exponent, one sees that this 
quantity only approaches the limiting value of 1 /  Y = 4 as y is almost equal to one. It 
is thus striking that the successive estimates of Y from the series, as shown in 
figure 3, approach the value Y = 1/4 is rapidly. 

Appendix. Well-stirred limit 

As a limiting case we consider the system where the occurrences of A and B on the 
lattice are random for all times. This means physically that the system is continually 
randomized, a condition we refer to as  the well-stirred limit. We treat the reaction 
A+B+O on the I D  lattice. We begin with the general equation 

The assumption of instantaneous randomization gives (for all times) 
dp,/df = -4pAB. (A I )  

PAB = PAPB. (A2) 
We introduce the variables 

where 

x,=p,(t =O)  = a Y o = P d f = O ) = P  (A41 

d l / d t = 4 ( a - t ) ( P - 5 )  (A51 

and 5 is the progress variable. Using (A2) and (A3) in ( A I )  gives 

which can be integrated to give (where we assume a > p )  
1 p[l -e-410-Pll 

--4l(I-P), 
1 -@/a) e 

5 =  

For a > p gives the asymptotic behaviour 

y - exp(-r/T) 
where one has the relaxation time 

( A i )  

1 
T =  (A81 4 ( a - p ) '  

As a 
behaviour. 

p the relaxation time goes to infinity, and in that limit one obtains a power-law 

For a = 6, (A I )  gives 

dx/dt  = -4xZ (A91 
which can be integrated to yield 

For the special case of a = p = 1/2 one has 
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